143,643 research outputs found

    Structure of the breakpoint region in CVC of the intrinsic Josephson junctions

    Get PDF
    A fine structure of the breakpoint region in the current-voltage characteristics of the coupled intrinsic Josephson junctions in the layered superconductors is found. We establish a correspondence between the features in the current-voltage characteristics and the character of the charge oscillations in superconducting layers in the stack and explain the origin of the breakpoint region structure.Comment: 5 pages, 5 figures. Accepted for Phys.Rev.

    Temporary cooling of quasiparticles and delay in voltage response of superconducting bridges after abrupt switching on the supercritical current

    Full text link
    We revisit the problem of the dynamic response of a superconducting bridge after abruptly switching on the supercritical current I>IcI>I_c. In contrast to previous theoretical works we take into account spatial gradients and use both the local temperature approach and the kinetic equation for the distribution function of quasiparticles. In both models the finite delay time tdt_d in the voltage response is connected with temporary cooling of quasiparticles due to the suppression of the superconducitng order parameter by current. We find that tdt_d has different values and different temperature dependencies in the considered models. In turns out that the presence of even small inhomogeneities in the bridge or of bulk leads/contacts at the ends of the {\it homogenous} bridge favors a local suppression of the superconducting order parameter Δ|\Delta| during the dynamic response. It results in a decrease of the delay time, in comparison with the spatially uniform model, due to the diffusion of nonequilibrium quasiparticles from the region with locally suppressed Δ|\Delta|. In case the current distribution is spatially nonuniform across the bridge the delay time is mainly connected with the time needed for the nucleation of the first vortex at the position where the current density is maximal (at IIcI\sim I_c and for not very wide films). We also find that a short alternating current pulse (sinusoid like) with zero time-average may result in a nonzero time-averaged voltage response where its sign depends on the phase of the ac current.Comment: 13 pages, 11 figure

    Shapiro and parametric resonances in coupled Josephson junctions

    Full text link
    The effect of microwave irradiation on the phase dynamics of intrinsic Josephson junctions in high temperature superconductors is investigated. We compare the current-voltage characteristics for a stack of coupled Josephson junctions under external irradiation calculated in the framework of CCJJ and CCJJ+DC models.Comment: 4 pages, Manuscript for Dubna-Nano 2012, submitted for Journal of Physics:Conference Serie

    Multiphoton detachment from negative ions: new theory vs experiment

    Get PDF
    In this paper we compare the results of our adiabatic theory (Gribakin and Kuchiev, Phys. Rev. A, accepted for publication) with other theoretical and experimental results, mostly for halogen negative ions. The theory is based on the Keldysh approach. It shows that the multiphoton detachment rates and the corresponding n-photon detachment cross sections depend only on the asymptotic behaviour of the bound state radial wave function. The dependence on the exponent is very strong. This is the main reason for the disagreement with some previous calculations, which employed bound state wave functions with incorrect asymptotic forms. In a number of cases our theoretical results produces best agreement with absolute and relative experimental data.Comment: 9 pages, Latex, IOP style, and 3 figures fig1.ps, fig2.ps, fig3.ps, submitted to J. Phys.
    corecore